
Dissecting Rotten Apples ï

macOS Malware Analysis

Felix Seele



whoami

2

Felix Seele

ÅTechnical Lead @ VMRay

ÅDeveloped first hypervisor-based 

macOS sandbox

ÅNow part of the VMRay Analyzer

@c1truz_



Dissecting the Apple

3

1. 

hyper

visor

4. real-world malware 

behavior



4

1. 

hyper

visor



Second-level page tables

Two-Dimensional Paging

5

Guest Virtual 

Memory

Guest Physical 

Memory

Host Physical 

Memory

Virtual Machine

r - x r - x

Hypervisor



Second-level page tables

Two-Dimensional Paging

6

Guest Virtual 

Memory

Guest Physical 

Memory

Host Physical 

Memory

Virtual Machine

r - x r --

Execution will cause 

page fault and trap 

to hypervisor!Hypervisor



Using TDP to monitor API calls

Two-Dimensional Paging

7

Evil.app Foundation.framework

libsystem_kernel.dylib

kernel

CFNetwork.framework

ÅDivide memory 

regions into two sets:
- Set A: Target 

executable

- Set B: System libraries 
and kernel



Using TDP to monitor API calls

Two-Dimensional Paging

ÅDivide memory 

regions into two sets:
- Set A: Target 

executable

- Set B: System libraries 
and kernel

ÅOne of the sets is 

executable, the other 

non-executable

8

Evil.app Foundation.framework

libsystem_kernel.dylib

kernel

CFNetwork.framework

ṍ



Using TDP to monitor API calls

Two-Dimensional Paging

9

Evil.app Foundation.framework

libsystem_kernel.dylib

kernel

CFNetwork.framework

ṍ
ÅDivide memory 

regions into two sets:
- Set A: Target 

executable 

- Set B: System libraries 
and kernel

ÅOne of the sets is 

executable, the other 

non-executable



Virtual Machine Introspection
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1..n

1..n

0..1 0..1

Mach

BSD

struct proc

pid_t p_pid

void *task

pid_t p_ppid

uid_t p_uid

...

struct task

uint32_t ref_count

boolean_t active

boolean_t halting

...

void *bsd_info

...

struct thread

...

void * uthread

...

uint64_t thread_id

...

struct uthread

...

struct proc * uu_proc ;

thread_t uu_thread;

void * uu_userstate;

...
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ÅIPC mechanism used in kernel and user space

ÅOpaque binary blob sent between two Mach Ports

ÅMach Port is essentially a message queue

ÅPort rights define who can send and receive messages:
- ñOwnerò of the port holds a receive right (only one)

- Senders need to hold a send right (0..n)

ÅMessages can also be complex:
- Pass port right to another process

- Pass out-of-line data (often used for spraying in kernel exploits)

Mach Messages
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ÅMach kernel objects are accessed through ports:
- task

- thread

- vm_map

- é

ÅExample:

Mach Messages ïKernel
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task_t remoteTask ;

task_for_pid ( mach_task_self (), pid , & remoteTask );
vm_protect ( remoteTask , 0x41414141, 0x100, FALSE, VM_PROT_READ| VM_PROT_EXECUTE);

typedef mach_port_t task_t ;



ÅMach messages are also the foundation of user space IPC

ÅMultiple high-level frameworks to facilitate passing structured data (-> XPC)

Mach Messages ïUser Space
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XPC messages

XPC-based 

RPC

CFPort MIG

Mach messages

ÅCommunication with system 

daemons
- Access the keychain

- Create persistent services

- é

ÅCommunication between sandboxed 

and privileged processes (sandbox 

escapes anyone?)

Auditing and Exploiting Apple IPC (Ian Beer) https://thecyberwire.com/events/docs/IanBeer_JSS_Slides.pdf

https://thecyberwire.com/events/docs/IanBeer_JSS_Slides.pdf


ÅSecurity researchers: Mach messages and the frameworks on top are really complex 

and many bugs have been found
- Ian Beer ĂAuditing and Exploiting Apple IPCñ https://thecyberwire.com/events/docs/IanBeer_JSS_Slides.pdf

- Ian Beer Ăvm_map'ingout XNU Virtual Memoryò https://objectivebythesea.com/v2/talks/OBTS_v2_Beer.pdf

- Linus HenzeĂKeySteal: A Vulnerability in Apple's Keychainñ https://objectivebythesea.com/v2/talks.html

- Liang Chen, QidanHe ĂShooting the OS X El Capitan Kernel Like a Sniperñ 
https://recon.cx/2016/resources/slides/RECON-0xA-
Shooting_the_OSX_El_Capitan_Kernel_Like_A_Sniper_Chen_He.pdf

ÅMalware analysis: A lot of relevant system functionality is implemented using Mach 

messages under the hood (eg.installing persistent services, screen capture, é)

ÅMalware sandboxes: Need to monitor IPC communication to not miss behavior

Mach Messages ïWhy should we care?

20

https://thecyberwire.com/events/docs/IanBeer_JSS_Slides.pdf
https://objectivebythesea.com/v2/talks/OBTS_v2_Beer.pdf
https://objectivebythesea.com/v2/talks.html
https://recon.cx/2016/resources/slides/RECON-0xA-Shooting_the_OSX_El_Capitan_Kernel_Like_A_Sniper_Chen_He.pdf
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Åpid 1

ÅEvery process has a send right to launchd (ñbootstrap portò)

ÅServes as a ñregistryò to look up Mach ports for registered services

launchd
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mach_port_t bs_port, service_port;
task_get_bootstrap_port ( mach_task_self (), &bs_port);

// register service
bootstrap_check_in (bs_port, "com.example.service" , &service_port);

// lookup service
bootstrap_look_up (bs_port, "com.example.service" , &service_port);



ÅResponsible for starting other processes:
- Background services (LaunchDaemons and LaunchAgents)

- Opening files/documents from Finder or other Applications

- On-demand (crash handler, on mount, on file modification, on connection, é)

ÅLaunchDaemons: Start at boot-time, no interaction

ÅLaunchAgents: Start at login-time, connected to the userôs session, may have GUI

ÅService defined in plist (XML)

launchd
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/System/Library/ LaunchDaemons /   -- system

/Library/ LaunchDaemons /          -- 3rd party

/System/Library/LaunchAgents     -- system

/Library/LaunchAgents            -- 3rd party (all users )

~/Library/LaunchAgents           -- 3rd party ( spec . user )
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<?xml version ="1.0" encoding ="UTF- 8" ?>
<!DOCTYPE plist PUBLIC " - //Apple//DTD PLIST 1.0//EN"
" http:// www.apple.com/DTDs/PropertyList - 1.0.dtd " >
<plist version ="1.0" >
<dict >

<key>Label </ key>
<string >com.apple.updates </ string >

<key>ProgramArguments</ key>
<array >

<string >/Users/ Shared/. local / kextd </ string >
</ array >

<key>KeepAlive </ key>
<false />
<key>RunAtLoad</ key>
<true />
<key>StandardErrorPath </ key>
<string >/ dev/null </ string >
<key>StandardOutPath </ key>
<string >/ dev/null </ string >

</ dict >
</plist>



ÅRestricts abilities of the root user (root -> kernel priv. escalation)

ÅFile system protection:
- System directories like /bin, /sbin, /usr and /System are read-only

- Some applications canôt be deleted

ÅRuntime protections:
- Canôt attach/inject into system processes

ÅKernel extensions must be signed

ÅSIP can only be disabled by booting into recovery mode and running csrutil

System Integrity Protection (SIP)
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Verify code signature of ñquarantinedò applications

Gatekeeper
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Signed Unsigned



Verify code signature of ñquarantinedò applications

Gatekeeper
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Also checks for known malware signatures (XProtect)

Gatekeeper
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Also checks for known malware signatures (XProtect)

Gatekeeper
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Appleôs built-in ñAVò

XProtect
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Gatekeeper Enhancements
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Up to 10.14 ñMojaveò10.15 ñCatalinaò

Malicious content scan
Quarantined files, opened 

through Finder
All executables

Signature checks
Quarantined files, opened 

through Finder
Quarantined files

Notarization - Required for quarantined files

Advances in macOS Security (WWDC 2019) https://developer.apple.com/videos/play/wwdc2019/701/

https://developer.apple.com/videos/play/wwdc2019/701/


Another òAVò?!?

Malware Removal Tool (MRT)

ÅAnother tool to remove malware from already infected Macs
- Not just malware (Zoom         ) 

https://eclecticlight.co/2019/07/10/apple-has-pushed-an-update-to-mrt-to-remove-zooms-hidden-web-
server/

ÅSignatures embedded in the binary

ÅPeriodic scans as opposed to one-time scan (Gatekeeper)
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https://eclecticlight.co/2019/07/10/apple-has-pushed-an-update-to-mrt-to-remove-zooms-hidden-web-server/
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Tools

Static:

ÅIDA, r2, Binary Ninja, Hopper

Åstrings, nm, file, lipo, otool, codesign

Å jtool(2)

Dynamic:

Å lldb

Ådtrace (fs_usage, dtruss)

Åfrida

ÅObjective-See tools (BlockBlock, 

procInfo, Lulu, é)

ÅSandboxes

34



Binary format

The Basics

ÅMach-O

ÅMagic: 0xfeedface (32 bit), 0xfeedfacf (64 bit), 0xcafebabe (fat)

ÅStructure:
- Header (magic, supported architectures, flags, # load commands)

- Load commands

Á Segments and sections

Á Dynamic linking info

Á Symbol table

Á UUID

Á Imported libraries

Á Code signing info

Á é

ÅUse favorite disassembler, otool or jtool to inspect Mach-O files

35https://github.com/aidansteele/osx-abi-macho-file-format-reference/blob/master/Mach-O_File_Format.pdf

https://github.com/aidansteele/osx-abi-macho-file-format-reference/blob/master/Mach-O_File_Format.pdf


Objective-C

The Basics

ÅHighly dynamic, object-oriented programming language

ÅSuperset of C
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NSProcessInfo * processInfo = [ NSProcessInfo processInfo ];
NSString * username = [ processInfo userName];

[ username writeToFile : @"user.txt " atomically : YES];

NSLog( @"Content written to path : %@\ n" , filename );

classname selector (aka method)

1st parameter 2nd parameter



Objective-C

The Basics

ÅAll classes and methods must be registered with runtime

Å-> Need to be defined in symbol table :)
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ÅOther common programming languages:

- Swift (MacSpy, Calisto, WindTail, EvilEgg)

- Bash (Shlayer)

- Python (LamePyre, DarthMiner, Dummy)

- Java (CrossRAT)

- C++, Qt (Mokes)

The Basics
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