
Dissecting Rotten Apples ï

macOS Malware Analysis

Felix Seele

whoami

2

Felix Seele

ÅTechnical Lead @ VMRay

ÅDeveloped first hypervisor-based

macOS sandbox

ÅNow part of the VMRay Analyzer

@c1truz_

Dissecting the Apple

3

1.

hyper

visor

4. real-world malware

behavior

4

1.

hyper

visor

Second-level page tables

Two-Dimensional Paging

5

Guest Virtual

Memory

Guest Physical

Memory

Host Physical

Memory

Virtual Machine

r - x r - x

Hypervisor

Second-level page tables

Two-Dimensional Paging

6

Guest Virtual

Memory

Guest Physical

Memory

Host Physical

Memory

Virtual Machine

r - x r --

Execution will cause

page fault and trap

to hypervisor!Hypervisor

Using TDP to monitor API calls

Two-Dimensional Paging

7

Evil.app Foundation.framework

libsystem_kernel.dylib

kernel

CFNetwork.framework

ÅDivide memory

regions into two sets:
- Set A: Target

executable

- Set B: System libraries
and kernel

Using TDP to monitor API calls

Two-Dimensional Paging

ÅDivide memory

regions into two sets:
- Set A: Target

executable

- Set B: System libraries
and kernel

ÅOne of the sets is

executable, the other

non-executable

8

Evil.app Foundation.framework

libsystem_kernel.dylib

kernel

CFNetwork.framework

ṍ

Using TDP to monitor API calls

Two-Dimensional Paging

9

Evil.app Foundation.framework

libsystem_kernel.dylib

kernel

CFNetwork.framework

ṍ
ÅDivide memory

regions into two sets:
- Set A: Target

executable

- Set B: System libraries
and kernel

ÅOne of the sets is

executable, the other

non-executable

Virtual Machine Introspection

10

Processes
Virtual Memory

Threads

Inter-Process Communication

Shared Libraries

Syscalls

11

1.

hyper

visor

macOS Architecture

12

Mach

BSD
Filesystem

Networking

Scheduling

Virtual Memory

Kernel

Space

ñXNUò IPC

...

IOKit kexts

macOS Architecture

13

Mach

BSD
Filesystem

Networking

Scheduling

Virtual Memory

Core Frameworks/Libraries

Kernel

Space

ñXNUò

User

Space Application Frameworks

Applications

syscall

IPC

...

IO Kit kexts

macOS Architecture

14

Mach

BSD

Core Frameworks/Libraries

User

Space Application Frameworks

Applications

IOKit kexts

open source

Kernel

Space

ñXNUò

closed source

https://opensource.apple.com/

https://opensource.apple.com/

15

1..n

1..n

0..1 0..1

Mach

BSD

struct proc

pid_t p_pid

void *task

pid_t p_ppid

uid_t p_uid

...

struct task

uint32_t ref_count

boolean_t active

boolean_t halting

...

void *bsd_info

...

struct thread

...

void * uthread

...

uint64_t thread_id

...

struct uthread

...

struct proc * uu_proc ;

thread_t uu_thread;

void * uu_userstate;

...

Mach Messages

16

Mach
Scheduling

Virtual Memory

Kernel

Space

ñXNUò

syscall

IPC

...

ÅIPC mechanism used in kernel and user space

ÅOpaque binary blob sent between two Mach Ports

ÅMach Port is essentially a message queue

ÅPort rights define who can send and receive messages:
- ñOwnerò of the port holds a receive right (only one)

- Senders need to hold a send right (0..n)

ÅMessages can also be complex:
- Pass port right to another process

- Pass out-of-line data (often used for spraying in kernel exploits)

Mach Messages

17

ÅMach kernel objects are accessed through ports:
- task

- thread

- vm_map

- é

ÅExample:

Mach Messages ïKernel

18

task_t remoteTask ;

task_for_pid (mach_task_self (), pid , & remoteTask);
vm_protect (remoteTask , 0x41414141, 0x100, FALSE, VM_PROT_READ| VM_PROT_EXECUTE);

typedef mach_port_t task_t ;

ÅMach messages are also the foundation of user space IPC

ÅMultiple high-level frameworks to facilitate passing structured data (-> XPC)

Mach Messages ïUser Space

19

XPC messages

XPC-based

RPC

CFPort MIG

Mach messages

ÅCommunication with system

daemons
- Access the keychain

- Create persistent services

- é

ÅCommunication between sandboxed

and privileged processes (sandbox

escapes anyone?)

Auditing and Exploiting Apple IPC (Ian Beer) https://thecyberwire.com/events/docs/IanBeer_JSS_Slides.pdf

https://thecyberwire.com/events/docs/IanBeer_JSS_Slides.pdf

ÅSecurity researchers: Mach messages and the frameworks on top are really complex

and many bugs have been found
- Ian Beer ĂAuditing and Exploiting Apple IPCñ https://thecyberwire.com/events/docs/IanBeer_JSS_Slides.pdf

- Ian Beer Ăvm_map'ingout XNU Virtual Memoryò https://objectivebythesea.com/v2/talks/OBTS_v2_Beer.pdf

- Linus HenzeĂKeySteal: A Vulnerability in Apple's Keychainñ https://objectivebythesea.com/v2/talks.html

- Liang Chen, QidanHe ĂShooting the OS X El Capitan Kernel Like a Sniperñ
https://recon.cx/2016/resources/slides/RECON-0xA-
Shooting_the_OSX_El_Capitan_Kernel_Like_A_Sniper_Chen_He.pdf

ÅMalware analysis: A lot of relevant system functionality is implemented using Mach

messages under the hood (eg.installing persistent services, screen capture, é)

ÅMalware sandboxes: Need to monitor IPC communication to not miss behavior

Mach Messages ïWhy should we care?

20

https://thecyberwire.com/events/docs/IanBeer_JSS_Slides.pdf
https://objectivebythesea.com/v2/talks/OBTS_v2_Beer.pdf
https://objectivebythesea.com/v2/talks.html
https://recon.cx/2016/resources/slides/RECON-0xA-Shooting_the_OSX_El_Capitan_Kernel_Like_A_Sniper_Chen_He.pdf

21

1.

hyper

visor

Åpid 1

ÅEvery process has a send right to launchd (ñbootstrap portò)

ÅServes as a ñregistryò to look up Mach ports for registered services

launchd

22

mach_port_t bs_port, service_port;
task_get_bootstrap_port (mach_task_self (), &bs_port);

// register service
bootstrap_check_in (bs_port, "com.example.service" , &service_port);

// lookup service
bootstrap_look_up (bs_port, "com.example.service" , &service_port);

ÅResponsible for starting other processes:
- Background services (LaunchDaemons and LaunchAgents)

- Opening files/documents from Finder or other Applications

- On-demand (crash handler, on mount, on file modification, on connection, é)

ÅLaunchDaemons: Start at boot-time, no interaction

ÅLaunchAgents: Start at login-time, connected to the userôs session, may have GUI

ÅService defined in plist (XML)

launchd

23

/System/Library/ LaunchDaemons / -- system

/Library/ LaunchDaemons / -- 3rd party

/System/Library/LaunchAgents -- system

/Library/LaunchAgents -- 3rd party (all users)

~/Library/LaunchAgents -- 3rd party (spec . user)

24

<?xml version ="1.0" encoding ="UTF- 8" ?>
<!DOCTYPE plist PUBLIC " - //Apple//DTD PLIST 1.0//EN"
" http:// www.apple.com/DTDs/PropertyList - 1.0.dtd " >
<plist version ="1.0" >
<dict >

<key>Label </ key>
<string >com.apple.updates </ string >

<key>ProgramArguments</ key>
<array >

<string >/Users/ Shared/. local / kextd </ string >
</ array >

<key>KeepAlive </ key>
<false />
<key>RunAtLoad</ key>
<true />
<key>StandardErrorPath </ key>
<string >/ dev/null </ string >
<key>StandardOutPath </ key>
<string >/ dev/null </ string >

</ dict >
</plist>

ÅRestricts abilities of the root user (root -> kernel priv. escalation)

ÅFile system protection:
- System directories like /bin, /sbin, /usr and /System are read-only

- Some applications canôt be deleted

ÅRuntime protections:
- Canôt attach/inject into system processes

ÅKernel extensions must be signed

ÅSIP can only be disabled by booting into recovery mode and running csrutil

System Integrity Protection (SIP)

25

Verify code signature of ñquarantinedò applications

Gatekeeper

26

Signed Unsigned

Verify code signature of ñquarantinedò applications

Gatekeeper

27

Also checks for known malware signatures (XProtect)

Gatekeeper

28

Also checks for known malware signatures (XProtect)

Gatekeeper

29

Appleôs built-in ñAVò

XProtect

30

Gatekeeper Enhancements

31

Up to 10.14 ñMojaveò10.15 ñCatalinaò

Malicious content scan
Quarantined files, opened

through Finder
All executables

Signature checks
Quarantined files, opened

through Finder
Quarantined files

Notarization - Required for quarantined files

Advances in macOS Security (WWDC 2019) https://developer.apple.com/videos/play/wwdc2019/701/

https://developer.apple.com/videos/play/wwdc2019/701/

Another òAVò?!?

Malware Removal Tool (MRT)

ÅAnother tool to remove malware from already infected Macs
- Not just malware (Zoom)

https://eclecticlight.co/2019/07/10/apple-has-pushed-an-update-to-mrt-to-remove-zooms-hidden-web-
server/

ÅSignatures embedded in the binary

ÅPeriodic scans as opposed to one-time scan (Gatekeeper)

32

https://eclecticlight.co/2019/07/10/apple-has-pushed-an-update-to-mrt-to-remove-zooms-hidden-web-server/

33

1.

hyper

visor

4. real-world malware

behavior

Tools

Static:

ÅIDA, r2, Binary Ninja, Hopper

Åstrings, nm, file, lipo, otool, codesign

Å jtool(2)

Dynamic:

Å lldb

Ådtrace (fs_usage, dtruss)

Åfrida

ÅObjective-See tools (BlockBlock,

procInfo, Lulu, é)

ÅSandboxes

34

Binary format

The Basics

ÅMach-O

ÅMagic: 0xfeedface (32 bit), 0xfeedfacf (64 bit), 0xcafebabe (fat)

ÅStructure:
- Header (magic, supported architectures, flags, # load commands)

- Load commands

Á Segments and sections

Á Dynamic linking info

Á Symbol table

Á UUID

Á Imported libraries

Á Code signing info

Á é

ÅUse favorite disassembler, otool or jtool to inspect Mach-O files

35https://github.com/aidansteele/osx-abi-macho-file-format-reference/blob/master/Mach-O_File_Format.pdf

https://github.com/aidansteele/osx-abi-macho-file-format-reference/blob/master/Mach-O_File_Format.pdf

Objective-C

The Basics

ÅHighly dynamic, object-oriented programming language

ÅSuperset of C

36

NSProcessInfo * processInfo = [NSProcessInfo processInfo];
NSString * username = [processInfo userName];

[username writeToFile : @"user.txt " atomically : YES];

NSLog(@"Content written to path : %@\ n" , filename);

classname selector (aka method)

1st parameter 2nd parameter

Objective-C

The Basics

ÅAll classes and methods must be registered with runtime

Å-> Need to be defined in symbol table :)

37

ÅOther common programming languages:

- Swift (MacSpy, Calisto, WindTail, EvilEgg)

- Bash (Shlayer)

- Python (LamePyre, DarthMiner, Dummy)

- Java (CrossRAT)

- C++, Qt (Mokes)

The Basics

38

